Early diffusion-weighted MRI as a predictor of caspase-3 activation after hypoxic-ischemic insult in neonatal rodents.

نویسندگان

  • Michael F Wendland
  • Joel Faustino
  • Tim West
  • Catherine Manabat
  • David M Holtzman
  • Zinaida S Vexler
چکیده

BACKGROUND AND PURPOSE Neonatal encephalopathy in human babies is a serious condition associated with permanent neurological deficits. Diffusion-weighted MRI (DWI) is increasingly used for early diagnosis of brain injury in human babies. The relationship between the presence of DWI abnormalities and cellular injury, including apoptosis, during the neonatal period are not well understood. We asked whether the extent of injury depicted on DWI can predict the presence of caspase-3 activation, a quantitative marker of apoptotic injury, after hypoxia-ischemia (H-I) in postnatal day 7 rats. METHODS Injury volume was determined by DWI at 2 hours, 24 hours, and 7 days after H-I and compared with histology. Caspase-3 activation and microgliosis were determined at 24 hours post-H-I. RESULTS DWI-defined lesions (eg, decreased apparent diffusion coefficient) at 24 hours post-H-I correlated with a major increase in caspase-3 activity in the injured hemisphere and predicted injury. A modest but significant increase in caspase-3 activity occurred in the cortex of rats that had no apparent diffusion coefficient decrease in the injured hemisphere but had unilaterally enlarged regions of high apparent diffusion coefficient at the ipsilateral ventricle/white matter interface. Caspase-3 activity was similar in both hemispheres in pups with unchanged DWI. CONCLUSIONS Abnormal DWI signal at 24 hours post-H-I is predictive of caspase-3 activation and can be used as an indicator that injury involving an apoptotic-like mechanism is present. Our data also suggest that the presence of an enlarged unilateral region with high apparent diffusion coefficient at the ventricle/white matter interface without significant apparent diffusion coefficient decrease in the cortex is a sign of modest caspase-3 activation after H-I.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing diffusion-weighted and T2-weighted MR imaging for the quantification of infarct size in a neonatal rat hypoxic-ischemic model at 24h post-injury.

PURPOSE In a neonatal rat model of hypoxic-ischemic (HI) brain injury, using T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI), we aim to determine the best MRI method of lesion quantification that reflects infarct size. MATERIALS AND METHODS Twenty 7-day-old rats underwent MRI 24h after HI brain injury was induced. Lesion size relative to whole brain was measured using T2WI and...

متن کامل

Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain.

BACKGROUND AND PURPOSE Different strategies for neuroprotection of neonatal stroke may be required because the developing brain responds differently to hypoxia-ischemia than the mature brain. This study was designed to determine the role of caspase-dependent injury in the pathophysiology of pure focal cerebral ischemia in the immature brain. METHODS Postnatal day 7 rats were subjected to perm...

متن کامل

Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury.

A previous study from our lab has shown that the polyphenol-rich pomegranate juice can protect the neonatal mouse brain against hypoxic-ischemic (H-I) injury when given to mothers in their drinking water. To test the hypothesis that this protection is due to the polyphenols in the juice, we studied the effects of the pomegranate polyphenol extract in the same neonatal H-I model. To further expl...

متن کامل

Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury.

Neonatal hypoxic-ischaemic (HI) brain injury resulting in encephalopathy is a leading cause of morbidity and mortality with no effective treatment. Here we show that caffeic acid phenethyl ester (CAPE), an active component of propolis, administered either before or after an HI insult, significantly prevents HI-induced neonatal rat brain damage in the cortex, hippocampus and thalamus. In additio...

متن کامل

Restricted diffusion in the corpus callosum: A neuroradiological marker in hypoxic–ischemic encephalopathy

BACKGROUND Restricted diffusion within the splenium of the corpus callosum has been described by other authors in various conditions, however, restricted diffusion in the entire corpus callosum or isolated involvement of the splenium, genu, or body has been infrequently reported on magnetic resonance imaging (MRI) in neonatal hypoxic-ischemic encephalopathy. We report a series of cases showing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 39 6  شماره 

صفحات  -

تاریخ انتشار 2008